56 research outputs found

    Percussive Penetration of Unconsolidated Granular Media in a Laboratory Setting

    Get PDF
    This controlled study examined the feasibility of a simple percussive approach to drilling through unconsolidated regolith deposits on Mars. The experiments showed that the approach is feasible at the low power levels and low confining pressures used, and that the rate of impact is more important to the penetration rate than is the mass of the impactor (hammer). More massive impactors tend to lower energy efficiency, as they do in terrestrial pile-driving. Unexpectedly, penetration plotted against applied energy tends to cluster into parallel linear trends. Within a given cluster, penetration is very sensitive to applied energy, while between clusters, the same penetration requires different energy levels. The clusters are separated by gaps whose widths may be related to the average grain size of the material being penetrated. The layered nature of natural sedimentary deposits is reflected in the cumulative energy-penetration plots, which could thus serve to record bedding thickness and frequency during Mars exploration. This study has shown that percussive drilling using a down-the-hole hammer design may be feasible in unconsolidated fine regolith near the ground surface

    Effect of Water Ice Content on Excavatability of Lunar Regolith

    Get PDF
    The amount of water ice contained within prepared samples of JSC-1 lunar regolith simulant strongly affects the excavatability of the material. As part of a NASA Phase I SBIR project, load-penetration testing of JSC-1 lunar regolith simulant was performed at water ice concentrations ranging from zero to 11% by mass (approximately saturated), after compaction and cooling to simulate probable lunar conditions. After mixing dry JSC-1 simulant with the appropriate amount of water, the samples were individually compressed into containment rings under 48 MPa of pressure. Thermocouples embedded in the samples monitored internal temperature while they were cooled in a bath of liquid nitrogen. At temperatures corresponding to the lunar polar cold traps, a 19mm-diameter hemispherical indenter was forced into the center of each sample while the required force and the resulting penetration were recorded. The results show strong sensitivity to water content. Regolith containing up to 0.3% water ice is very easy to excavate and behaves like weak coal. Regolith with 0.6 to 1.5% ice is readily excavatable and acts like weak shale or mudstone. Regolith with ~8.4% ice would be excavated with mechanical excavators, much like moderate-strength limestones, sandstones, and shales. The highest strength mix (~10.6% ice) behaves like strong limestone or sandstone, which require massive excavators. These results show that realistically compacted ice-regolith mixtures may be harder to excavate than previously believed, and that mixture variability must be well-understood to design effective excavators

    Review of Lunar Regolith Properties for Design of Low Power Lunar Excavators

    Get PDF
    Lunar regolith is the product of the intermittent comminution of rocks over extremely long durations, and as such is very different from familiar terrestrial soils. A limited amount of information on lunar regolith was collected by the Apollo space program for a few locations. Additional data is required to design effective excavators to prepare outpost sites and to mine the feedstock for production of the material required for a self-sustaining crewed base on the moon. On-site manufacturing would reduce significantly the mass of material that must be launched from Earth. This paper discusses what is known and what is yet unknown about the characteristics and anticipated behavior of lunar regolith as they pertain to efficient excavation operations on the moon. It also discusses the results of tests performed on lunar simulant in dry and frozen conditions and the effects of moisture content as well as temperature on the strength of the frozen material. The results of indentation tests will be presented along with discussion of the cutting forces required for mechanical excavation of the frozen regolith. Implications of material behavior on the design of the cutterhead of excavation systems will also be reviewed

    Biliary Stricture Following Hepatic Resection

    Get PDF
    Anatomic distortion and displacement of hilar structures due to liver lobe atrophy and hypertrophy occasionally complicates the surgical approach for biliary stricture repair. Benign biliary stricture following hepatic resection deserves special consideration in this regard because the inevitable hypertrophy of the residual liver causes marked rotation and displacement of the hepatic hilum that if not anticipated may render exposure for repair difficult and dangerous. Three patients with biliary stricture after hepatectomy illustrate the influence of hepatic regeneration on attempts at subsequent stricture repair. Following left hepatectomy, hypertrophy of the right and caudate lobes causes an anteromedial rotation and displacement of the portal structures. After right hepatectomy, the rotation is posterolateral, and a thoracoabdominal approach may be necessary for adequate exposure. Radiographs obtained in the standard anteroposterior projection may be deceptive, and lateral views are recommended to aid in operative planning

    Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)

    Get PDF
    On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU

    Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report

    Get PDF
    The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FAST"TM"s final product for the ARM

    Economic Analysis Tools for Mineral Projects in Space

    No full text
    The charge to the workshop was to propose projects of commercial potential utilizing resources available in space. Many of the proposed projects involved resources that will have to be mined, either to supply a primary product or as raw feedstocks for products manufactured in space or for construction projects in space. Mining engineers are accustomed to dealing with all aspects of commercial projects, from initial planning through financing to final closedown. The economic analysis tools presented here comprise an overview of the tools provided to mining engineers, and are offered here as tools that can be applied effectively to space ventures. Space and mining projects share fundamental similarities: high risk, long lead times, and high capital cost. The analysis starts with the definition of ore, which is purely economic: ore is a geologic material that can be extracted from the ground at a profit. For profit to occur, sales must exceed costs, or: Sales-Costs = Profi
    • …
    corecore